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Scope

! The next three talks form a set
! This talk: 

» A couple of additional limits to sensitivity
» A view of the system engineering to move from theory to practice in 

designing a GW detector
! Jamie Rollins: pygwinc, a software tool to show graphically how a GW 

detector design can perform
! Kevin Kuns: 

» examples of how to actually implement design choices in pygwinc
» how you can use them to actually make the design choices and 

what some of the constraints on those choices are
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What is our measurement technique?

! Enhanced Michelson 
interferometers

! GWs modulate the distance 
between the end test mass 
optic and the beam splitter

! The interferometer acts as a 
transducer, turning GWs into 
photocurrent proportional to 
the strain amplitude 

! For a given strain h = ΔL/L,
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Useful paradigm in considering 
limits to detector sensitivity

! Ability to measure the position of our test mass
» Shot noise 
» Scattered light
» Laser light defects – intensity, position, mode shape, frequency 

noise
» Laser path noise fluctuations, apparent or real
» Electronics noise

! True noise motions of the reference surface on our ‘free test mass’ 
which can mask GWs
» Thermal noise
» Radiation pressure
» Environmental mechanical forces – seismic, anthropogenic, 

weather
» Stray electric, magnetic fields
» Accidental noise forces from our control systems and sensors
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In the school so far…

! An in-depth review of the ‘fundamental’ noise sources:
» Thermal noise - Geppo Cagnoli (low-loss construction)
» Coating Brownian noise - Stuart Reid (choice of materials, details 

of coating process)
» Newtonian (gravity gradient) noise - Evan Hall (design of 

environment around test masses; sensing)
» Quantum noise - Stefan Danilishin (interferometer topologies; 

amount of light power; squeezing)
» Seismic noise - Conor Mow-Lowry (active and passive filtering)

! I’ll now add to that a couple of others:
» Path-length fluctuations due to residual gas in arms
» Scattered light
» Taxpayer noise
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Vacuum System

9

! The 3 or 4km path of the laser from BeamSplitter to end mirror must be 
in an excellent vacuum 

! Polarizability ⍺ of the remaining gas molecules induces path-length 
fluctuations; Poisson Statistics, and an effect proportional to square 
root of density ⍴1/2 along the path
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Residual gas: path-length
fluctuations, pendulum damping

! Pygwinc model for residual gas, for
» The path length fluctuations for gas along the n*km path
» Pendulum suspension thermal noise due to transfer of momentum 

to/from gas molecules from/to test mass
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How scattered light affects the IFO

! Scattered light is especially problematic if the light can re-enter the 
main beam path, scattered back from moving objects like baffles or 
chamber walls.

! Scattered light noise is seen in the DARM spectrum in the frequency 
range 10-200 Hz.

! Significant noise source.
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Finding coupling to scattered light

12 of 132

How do we determine that at 
least some of the excess noise 
is related to scattering?

! Scattering from chamber 
walls is measured via 
acoustic excitation, then 
measuring response in GW 
strain output. 

! If clean room fans (in ceiling 
above chambers) are turned 
on, motion of chamber walls 
increases by factor of 30-100 
above 40Hz. 

! Plot shown shows acoustic 
coupling to detector output 
via scattered light
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Beam Tube Scattered Light

! Laser wavelength determines the minimum beam size after 4km 
propagation – for 1064nm Nd:YAG, this leads to 10-12cm diameter for 
1/e2– but in fact mirrors must be much further in the tails of Gaussian,  
~10-6 loss per bounce

! In addition, the mirrors are not perfect
» ‘dust’ and point defects
» Large-scale ‘waviness’ (~10 nm over 10 cm)

! à very low scatter mirrors
! à 1.2m diameter beam tube
! à baffles to catch scattered light
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A+ noise model

! The pygwinc model for a set of analytically calculable noise sources
» Scattered light not here…can’t calculate ab initio

! Kevin and Jamie will show you how to make and modify these models

14



Scattered light as measured, along with a 
few other additional terms….

15



G2101144

Taxpayer noise

! I promised a page on this noise source!
» Finding equilibrium with funding is a crucial ‘system engineering’ trade

! The length of the detector is the most significant scale factor
» Length of vacuum pipe, support and protection structures
» Diameter as sqrt(length) due to diffraction of the beam

! Vacuum system
» Order of 45% of the cost for CE

! Earthmoving and civil construction more generally
» If on the surface, need to deal with spherical earth and linear laser

– Finding a ‘bowl’ == truly flat site can help significantly
» If underground, tunneling
» Order of 30% of the cost for CE

! Detector
» Order of 20% of the cost for CE

! Legally spending billions of Dollars (etc.) in an efficient way -- management
» Order of 5% of the cost of CE
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Observatory Infrastructure;
LIGO as an example
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Civil Construction

! Light travels in straight lines (when far from black holes)
» The Earth is not flat (whatever some political partisans may say) 
» Sagitta for 4km is some 1/3m – some earthmoving needed
» For 40km more like 30m – need to find a truly flat (not spherical) site

! Also need stable foundation to support 1.2m beam tube
! And some weather protection for the beam tube

» Turns out that there are are stainless-steel eating microbes
» Also wasps and black-widow spiders
» And rodents
» …and, worst of all, humans
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Civil Construction: 
Beam Tube cover, foundation, earthmoving

19
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…and worst of all, humans
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Length

! In addition to understanding and adjusting the design for thermal noise, 
quantum limits, Newtonian background, seismic noise, there are important 
parameters to consider

! Length is good for sensitivity! Technically much easier than lowering noises
» Signals get larger, noises tend not – until one is comparable to λ/2
» Optimum for coalescence of BNS around 20km

! Length scaling dominates 
the cost for a detector

21
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Sensitivity improvements are 
very well rewarded

! LIGO ‘A+’ – Incremental changes to the 
Advanced LIGO design
» Similar changes planned for Virgo

! Rough doubling of reach
» 23 = 8 greater volume
» 8x higher rate
» 17-300 BBH/month
» 1-13 BNS/month
» 2-11 BNS x SGRB 

coincidences/year
! Population studies
! Hubble Constant
! …higher SNR for e.g.,

tests of GR

! Plan to be observing 
~2025 (uncertain pandemic delay)
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Depth

! Burying the detector has clear advantages (see talk on Newtonian 
background) to improve the low-frequency sensitivity

! The Science Case should drive the design decision here
! Asking for both an optimal length and and a buried detector is probably 

unrealistic from a cost standpoint
! Next-generation detectors are a wonderful illustration

» Cosmic Explorer: 40km, surface detector, best reach
» Einstein Telescope: 10km, underground, best low-frequency

! Also practical considerations: 
» Con: Working underground, safely, is hard! Can expect slower 

progress in activities leading up to observation
» Pro: On the surface, Blocking migratory paths, occupying land 

belonging to indigenous peoples present very difficult puzzles to 
solve
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Risk

! Different projects can adopt different risk levels
! GEO-600 is a great example of a situation where high risks can be 

taken
! Also different cultures, funding agencies, collaborations have different 

levels of tolerable risk
! More ambitious designs require more R&D to be successful to be 

realized, and may 
» Take more time to get working
» Lead to a more sensitive detector
» Make more significant steps forward in measurement science
» And be risky!

! Safety
» A different kind of risk, but human safety is very important
» One person seriously injured or worse is not only a human tragedy 

– it can also kill a project
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System Engineering

! To find solutions which meet the observational science goals, and 
which fit in the other constraints just discussed, is tricky

! Requires compromises both in the initial design, and dynamically as the 
project advances

! Constant modeling of the sensitivity is crucial, along with modeling of 
schedule and cost

! A mixture of engineering, instrument science, observational science, 
and project management is needed to succeed

! The next two talks will put the sensitivity modeling tools in your hands 
to allow that part of the challenge to be explored

! Just keep in mind that a full design process has a great deal of 
richness! 
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An Example:
Let’s look at the actual LIGO 

layout and hardware
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Laser Clean Room; 
extraterrestrials for scale

200 W, single frequency, single 
mode, Nd:YAG laser

Challenging requirements:
• df ~ 10-6 Hz/Hz1/2

• d I/I ~ 10-8 /Hz1/2
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Vacuum chambers to 
protect and isolate optics
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Inspecting mirror during 
fabrication
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~35 cm diameter, 40 kg
Ultra-high purity fused silica

Challenging requirements:
• l/1000 surface figure
• < 1 ppm absorption
• ~10 ppm scatter

• 0.1 % coating uniformity31
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End-mirror assembly
(humans removed before pumpdown)
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Optic Suspensions
Main (test) 

Chain
Reaction 

Chain

R0, 
M0

L1

L2

L3

Electromagnetic 
sensors/actuators 
measure position 
relative to a reaction 
chain that is also 
passively isolated

Lower stage actuators 
used to 
control/maintain 
optic cavity length 
and alignment

‘Monolithic’ – optic, 
penultimate mass, 
and suspension fibers 
welded together
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Active and passive seismic isolation
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The Control Room
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Another crucial element for 
success: Collaboration

! Table-top scientists – precision measurement, laser, atomic – started 
the field; tradition of small groups, small projects, and some competition

! Early general relativists, theorists, astrophysicists much the same
! Transformation when High Energy Physics types got involved

» Engineering, project organization, computing, analysis
! Funding agencies also saw a need for a shift

» There is a real skill in spending hundreds of millions of Euros!
! Goal pre-discovery was crystal-clear: Make a detection
! Afer the Collaborations formed and were stable, meta-collaborations: 

‘The LVK’ – KAGRA, Virgo, and LIGO Scientific Collaborations all 
sharing data
» The science that is possible is qualitatively greater
» The sociology of a (mostly) non-competitive environment nurturing 

and supportive
! LISA and Pulsar Timing also in collaborations/consortia
! Now perhaps 3000 persons worldwide
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pygwinc

! Now: Introduction and application of a tool used by many to model the 
sensitivity as a function of design choices
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