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Beginning of Gravitational 
Wave Astronomy
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Advanced LIGO detectors
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STORY BEGINS ON SEPTEMBER 14, 2015

 

A GENERIC GRAVITATIONAL WAVE SEARCH 

ALGORITHM SHOWS AN ALERT 

4LVC, PRL 116, 061102 (2016)
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GW150914: First black hole binary merger event
• Collision of two stellar mass black hole of 

masses 36-29 Msun into a kerr black hole.


• Located at the distance of 1.33 billion light 
years (450 Mpc)


• Signal duration of gravitational wave was 
200 msec.


• Remnant black-hole of 62 Msun


• Highly relativistic system produced peak 
strain of 


• Power radiated in GW is equivalent to 
3Msun.

h ∼ 10−21

LVC, PRL 116, 061102 (2016) 6



Four Firsts from the discovery
• First direct detection of 

gravitational waves


• First direct observation 
of stellar mass black 
holes in a binary system


• First direct evidence of 
collision of black holes 
in the binary system 


• First direct evidence of 
existence of stellar 
mass black holes > 25 
Msun

For decisive contributions to the LIGO And  
The observation of gravitational waves 

2017 Nobel Prize in Physics
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Some background
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Equivalence Principle:  Motion under gravity is a problem of 
geometry. 

The matter defines the geometry. Geometry decides the 
trajectories 

The weak field and slow motion limit  
of the theory == Newtonian Gravity

General Theory 
of Relativity 

(1916)



Measure of strength of gravity

↵ =
2GM

Rc2
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Compactness 
parameter  : 

Sun 

Mass ~ 1e20 kg 
Radius ~ 700,000 km

Neutron Star (NS) 

Mass ~ 1.4 Msun 
Radius ~ 10 km

Black Hole (BH) 

Mass ~ 3.0 Msun 
Radius ~ 9.0 km 

↵ ⇠ 0.000004 ↵ ⇠ 0.4 ↵ ⇠ 1



General Relativity and Gravitational Waves
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Estimate gravitational wave strain h
• Gravitational wave amplitude in terms of 

quadrupole moment Q




• Homework 1: Spinning rod of length 10 
meters, spinning at 10Hz and mass of 1 ton 
located on Moon. Calculate the GW 
amplitude.
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Coalescing compact binary in our galaxy:

NS Binary system located at 5kpc. 


Orbital period: 7.7hrs

Orbital radius: 1 million km    


GW dimensionless  amplitude  —     

GW frequency — 72 microHz

h ∼ 10−23

hinspiral ∼ M5/3
c f2/3

r



Gravitational Wave polarizations
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Astrophysical sources of gravitational waves
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Hubble

S&T
NASA

ESO



Coalescing Compact binaries in GW detector
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Coalescing binary and time frequency morphology
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Mc = μ2/5M2/5(1 + z)

Inspiral phase is characterised by 
redshifted chirp mass: 

Reduced mass Total mass

• Signal duration of gravitational wave is 150 msec.


• Inspiral signal frequency: 30 — 150 Hz


• Inspiral phase gives chirp mass Mc ~ 30 Msun


• What if NS-BH system? With one NS, BH needs to be 
at least ~ 475 Msun


• Would have coalesced much faster and would not 
reach frequency as high 150Hz.         


• Measurement of ringdown frequency gives 

fGW|ringdown ∼ 260Hz ( 65M⊙
M )

GW150914 TF morphology

f −8/3
GW (t) = (8π)8/3

5 ( GMc

c3 )
5/3

(tc − t)

GW frequency evolution: 

LVC, Annalen der Physik (2017)

More detailed data analysis — John Veitch’s talk



Homework 2:  
Plot the signal duration of the inspiral phase with respect to 

total mass.                                                                                  
Assume equal mass binary system and consider the signal 

enters the detector at 15Hz.
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Compact binary gravitational wave signals
• Masses and spins


• Source location and orientation in the sky


• Spin orientation with respect to the binary orbit : mis-aligned spins give precession

18



EM observations: Classification of Black holes
• Stellar-mass black holes:  Black holes with mass < 100Msun


• Produced due to supernova-core collapse of the massive star


• Observed so far in X-ray, optical astronomy


• Supermassive mass black holes: Black holes with mass > 1 million Msun


• Harbours at the centre of most of the galaxies and acts as engines of the 
galaxies


• Intermediate mass black holes: Black holes which fall in-between the two.


• Indirect evidence of their existence in the EM astronomy


• Direct observation of a black-hole with mass 142 Msun in GW window!  
(Later in the talk) 19



First two years of gravitational wave astronomy                 
(Sept 2015- August 2017) 

First two observing runs of Advanced LIGO and 
Virgo detectors
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Result of first two observing runs of LIGO-Virgo detectors O1(Sept2015-Jan2016),O2(Nov2016-Aug2017):
Binary black holes : 10   and  Binary neutron star: 121



GW170817: the first 
binary NS merger                         

• Jointly observed as binary NS merger event in GW 
window and short GRB in the EM telescopes


• Closest LIGO-Virgo compact binary merger event


• Closest observed short GRB event @40 Mpc


• Implications


• Waveforms consistent with Einstein’s GR 


• Equation of state constraints 


• Resolved short GRB progenitor puzzle


• Independent estimation of Hubble’s constant with  the 
NGC4993 galaxy association 


• Constraint on the speed of gravitational waves

LVC, Nature 2017

LVC, PRL 2017, LVC+EM, ApJL 2017
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First Five years of gravitational wave 
astronomy! 

Three observing runs of advanced detectors 
are complete
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Masses of the observed compact binaries
• Most of them are nearly equal mass 

systems. 


• For a fixed total mass, GW signal from 
equal mass system is longer (louder) 
than un-equal mass systems.


• Most massive remnant: GW190521


• First GW detection : GW150914


• Two systems showed asymmetry : 
GW190814 and GW190412


• Binary NS : GW170817, GW190425

LVC, GWTC-2, PRL 2020, 25



GW190425: Heaviest NS observed so far
• Primary: 1.6-2.5 Msun — on the 

higher end. Most massive pulsar PSR 
0740-6620 has mass 2.05-2.24 Msun


• Total mass: 3.3-3.7 Msun               
Heaviest system so far. Large 
deviation from the total mass 
distribution of the galactic NS binaries


• Large sky map 8000 sq. deg


• No confirmed EM and neutrinos 
detected, so far


• Distance: 150 Mpc
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LVC, ApJL 2020
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GW190814: Most asymmetric compact binary
• 23.2 Msun + 2.6Msun —> 25.6 Msun


• Secondary is either lightest BH/heaviest NS. Though no 
clear evidence of NS but can not be ruled out.


• Distance: 240 Mpc


• Raises important challenges on the compact binary 
formation scenarios


• Evidence of Higher order modes.


• Sky localisation of 20 square degrees — best sky-
localised compact binary so far with no EM counterpart


• Implications: Obtain Hubble’s constant using the 
galaxies in the sky-patch. Not so constraining given the 
single observation (More later) LVC, ApJ Lett. 896, 2 (2020)27



GW190521: Most massive black hole binary so far!

• Most massive stellar binary BBH 
system observed so far.


• Most distant GW source @ 5Gpc.


• Remnant mass is an IMBH (142 Msun).


• First direct evidence of existence of 
IMBH with mass below 1000 Msun.


• Possibility of massive black hole 
formation channel other than core 
collapse supernova

LVC, PRL 125, 101102(2020)28



Black-hole binary formation

Credit: Rodrigues

Credit: Michela

Isolated binary 
formation

Binary in the crowded 
environment
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Spins of the binary mergers
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• Most of them are nearly low spin, closed to small 


• Few anti-aligned and some show precession e.g GW170729, GW190517_055101, 
GW190514_065416, GW190521

30



Observed black-hole binaries in GW astronomy

• Most of them are nearly equal mass 
systems. 


• Most of them are aligned system.


• Isolated black-holes — Expected to be 
aligned


• Binaries formed in the crowded 
environment — Randomly oriented

LVC, GWTC1, PRX 201931



Probing cosmology with GW observations

• Coalescing compact binary observations provide 
an independent measure of the Hubble’s constant 


• BNS observation in GW window (Luminosity 
distance measurement) + associated galaxy and 
redshift measurement —> Hubble’s constant            
[Multi-messenger observation of GW170817]


• Improved sky location of binary BH system with 
the network + information of known galaxies in the 
sky-patch with redshift information —> Hubble 
constant estimate

LVC, arXiv:1908.0606032



Astrophysical merger rate estimates 
• Binary NS merger rate estimates


• Consistent with the lower black hole mass gap of 2.6 
Msun- 6 Msun


• The detections show evidence of distribution not 
following a simple power law — Need to account for 
massive black holes


• Models with peak in the distribution by incorporating 
Gaussian profile in addition to the power law is 
preferred by the data.


• Binary BH merger rate estimates  


LVC,  https://arxiv.org/abs/2010.14533 33
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Thank you for attention 
Stay tuned

List of resources:

Black hole hunter game — https://blackholehunter.org/


GW open science page —https://www.gw-openscience.org/about/

Open public alert: https://gracedb.ligo.org/superevents/public/O3/

35



Testing Einstein’s theory with observations

• Signatures of GR are embedded in the Gravitational wave signal.


• Deviations from GR can be captured by matching the data with the predicted GR 
signal.


• Various parts of the signal are found to be consistent with GR.


•  Observations are consistent with the Einstein’s GR. 
LVC, PRD 100, 104036 (2019), LVC, ApJ Lett. (2017), LVC — GWTC-2
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Intermediate mass black holes
• Black holes with mass > 100 Msun and 

mass below supermassive black holes


• IMBH candidates exists in X-ray 
astronomy


• HLX1: Most promising IMBH candidate


• Power radiated                 
(million times that of our Sun)


• Estimated mass ~ 100,000 Msun


• Direct observation of black hole with mass 
142 Msun in gravitational wave window 
[Later in this talk]

1032Watts
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