Why do we need larger network of observatories?

M. Branchesi Gran Sasso Science Institute INFN/LNGS and INAF

A new window into the Universe

Whereas the challenge to detect the elusive signal drives the technological design of laser-interferometer gravitational-wave detectors, the identification and characterization of astrophysical sources emitting the gravitational-wave signals require a global network of gravitational-wave detectors.

Branchesi & Whitcomb

"Global Detector Networks" in the "Advanced Interferometric Gravitational-Wave Detectors" Book Edited By: D. Reitze, P. Saulson and H. Grote, 2019

Scientific motivations of using observations of a network of detectors:

i) to increase the detection confidence of weak GW signals

ii) to improve signal/source reconstruction and then provide an accurate estimate of the source parameters

iii) to enable gravitational waves to be part of the multi-messenger observations of the Universe

CAD drawing of the proposed LIGO India observatory ASTROPHYSICAL SOURCES emitting transient GW signals detectable by LIGO and Virgo (10-1000 Hz)

Coalescence of binary system of neutron stars and/or stellar-mass black-hole

- Orbital evolution and GW signals accurately modeled by post-Newtonian approximation and numerical simulations \rightarrow precise waveforms
- Energy emitted in GWs (BNS): $\sim 10^{-2} M_{o}c^{2}$

Isolated neutron-star instabilities

- Modeling of the GW shape and strength is complicated \rightarrow uncertain waveforms
- Energy emitted in GWs:
- ~ $10^{-9} M_o c^2$ for the core-collapse ~ $10^{-16} - 10^{-6} M_o c^2$ for isolated NSs

Core-collapse of massive stars

RARE EVENTS

- Milky-way equivalent galaxy:
- BNS a few tens per milion years
- BBH a few per milion years

Milky-way equivalent galaxy:

• core-collpse SN one per 100 year

IMPERATIVE TO ENLARGE THE OBSERVABLE UNIVERSE

Strain sensitivities as a function of frequency

Abbott et al. 2020, LRR

SENSITIVITY IN TERMS OF RANGE/HORIZON DISTANCE

- Range: the volume- and orientation-averaged distance at which a compact binary coalescence gives a matched filter SNR of 8 in a single detector
- Distance for face-on system: distance at which an optimally oriented system (orbital plane perpendicular to the line of sight) would be observed with an SNR of 8: range x 1.5
- Horizon: distance at which an optimally oriented and located binary system would be observed with an SNR of 8: range x 2.26

RANGES corresponding to the orientation-averaged spacetime volumes surveyed per unit detector time

SNR = 8 in each detector

		01	O2	O3	O4	O5
BNS Range (Mpc) 1.4 Mo+1.4 Mo	aLIGO AdV KAGRA	80 - -	100 30 -	110–130 50 8–25	160 - 190 90 - 120 25 - 130	330 150–260 130+
BBH Range (Mpc) 30 Mo+30 Mo	aLIGO AdV KAGRA	740 - -	910 270 -	990–1200 500 80–260	1400 - 1600 860 - 1100 260 - 1200	2500 1300-2100 1200+
NSBH Range (Mpc) 1.4 Mo+10 Mo	aLIGO AdV KAGRA	140 - -	180 50 -	190–240 90 15–45	300 - 330 170 - 220 45 - 290	590 270–480 290+
Burst Range (Mpc) $E_{\rm GW} = 10^{-2} M_{\odot} c^2$	aLIGO AdV KAGRA	50 - -	60 25 -	80-90 35 5-25	110 - 120 65 - 80 25 - 95	210 100–155 95+
Burst Range (kpc) $E_{\rm GW} = 10^{-9} M_{\odot} c^2$	aLIGO AdV KAGRA	15 - -	20 10 -	25 - 30 10 0 - 10	35 - 40 20 - 25 10 - 30	$70 \\ 35 - 50 \\ 30 +$

SENSITIVITY and TEMPORAL COVERAGE of the different detectors

→ determines the **effective sensitivity of the network**

- network sensitivity improves with the square root of the number of detectors (assuming equivalent detector sensitivities and under the assumption of Gaussian noise)
- increasing the number of detectors also improves the network duty cycle
- weak signals rely strongly on coincident/coherent detection among the detectors in the network.

ORIENTATIONS OF THE DETECTORS in the network \rightarrow determine the ability to reconstruct the full waveforms (two polarizations) and more accurately evaluate the parameters of the gravitational-wave sources.

SPATIAL DISTRIBUTION of the detectors
→ determines their ability to locate source positions

LOCALIZATION CAPABILITY

Sky location - single GW detector directional sensitivity

$$\frac{\Delta L}{L} = h_{\text{det}}(t) = F_+ h_+(t) + F_x h_x(t)$$

The **antenna pattern** depends on the polarization in a certain (x,+) basis

- Single GW detector is a good all-sky monitor, nearly omni-directional (the transparency of Earth to GWs)
- But does not have good directional sensitivity, not a pointing instrument! It has a very poor angular resolution (about 100 deg)

The source localization requires a network of GW detectors

The **sky position** of a GW source is mainly **evaluated by triangulation**, measuring the differences in signal arrival times at the different network detector sites

The localization capability improves with signal SNR \rightarrow the sky localization area scales inversely with the square of the SNR

2017 August 14, 10:30:43 UT

Virgo observed its first BBH coalescence, GW170814

Credit: LIGO-Virgo

2017 August 14

Credit: Leo Singer

2017 August 14

LH 1160 square degrees LHV 60 square degrees LHV oU square degrees

(Milky Way image: Axel Mellinger)

....searching for electromagnetic signals...

17 August 2017, 12:41:04 UT

Credit: University of Warwick/Mark Garlick

Coalescence of neutron star binary

Thermal and non thermal emission components associated with BNS and NSBH merger

Ascenzi et al. 2021

17 August 2017, 12:41:04 UT

→ 17:54:51

GW170817

Credit: LIGO/Virgo/NASA/Leo Singer

Combined signal-to-noise ratio of 32.4

The signal comes from "blind spot"

The low signal amplitude observed in Virgo significantly constrained the sky position

A global space and ground multi-messenger network.....

GW observables

GW170817: PARAMETERS OF THE SOURCE

23 < *f /Hz* < 2048 Analysis uses source location from EM

Mass range 1.0 – 1.89 Mo
 1.16 – 1.60 Mo low spin

Masses are consistent with the masses of all known neutron stars!

Abbott et al. 2019, Phys Rev X

TIDAL DEFORMABILITY

$$\Lambda = (2/3)k_2[(c^2/G)(R/m)]^5$$

From only GWs we cannot say both components of the binary were NS

Post merger remnant?

Post merger remnant?

Abbott et al. 2017, ApJL,851

GW search:

- ringdown of BH around 6 kHz
- \rightarrow LIGO/Virgo response strongly reduced
- short (tens of ms) and intermediate duration (≤ 500 s) GW signals up to 4 kHz

 \rightarrow no evidence of postmerger signals, but it cannot rule out short- or long-lived NS

EM non-thermal emission

Short Gamma Ray Burst

GRB 170817A

- 100 times closer than typical GRBs observed by Fermi-GBM
- it is also "subluminous" compared to the population of long/short GRBs
- $10^2 10^6$ less energetic than other short GRBs

Abbott et al. 2017, APJL, 848, L13

Intrinsically sub-luminous event

or a classical short GRB viewed off-axis?

X-ray and radio emissions 9 and 16 days after the merger

10

Time since GW trigger [d]

100

After 150 days from the BNS merger...

..unexpected slow achromatic flux—rise until ~ 150 days!

D'Avanzo et al. 2017, A&A

RADIAL or ANGULAR STRUCTURE?

Mildly relativistic isotropic outflow (choked jet)

Structured Jet (successful) off-axis jet

[see e.g. Rossi et al. 2002, Zhang et al. 2002, Ramirez-Ruiz et al. 2002, Nakar & Piran 2018, Lazzati et al. 2018, Gottlieb et al. 2018, Kasliwal 2017, Mooley et al. 2017, Salafia et al. 2017, Ghirlanda et al. 2019]

After 150 days from the BNS merger...decaying phase!

MULTI-WAVELENGTH LIGHT CURVES CANNOT DISENTANGLE THE TWO SCENARIOS!

[Margutti, et al. 2018, Troja, et al. 2018, D'Avanzo et al. 2018, Dobie et al. 2018, Alexander et al. 2018, Mooley et al. 2018, Ghirlanda et al. 2018]

SIZE CONSTRAINTS

Observations 207.4 days after BNS merger by global VLBI network of 33 radio telescopes over five continents constrain SOURCE SIZE < 2 mas

Ghirlanda et al. 2019, Science

See also Mooley, Deller, Gottlieb et al. 2018

SIZE CONSTRAINTS

Ghirlanda et al. 2019, Science

Ruled out nearly isotropic, mildly relativistic outflow , which predicts proper motion close to zero and size > 3 mas after 6 months of expansion

Ghirlanda et al. 2019, Science

A relativistic energetic and narrowly-collimated jet successfully emerged from neutron star merger GW170817!

Thermal-emission

Kilonova

Tidal-tail ejecta → r-process

Neutron capture rate much faster than decay, special conditions: $T > 10^9$ K, high neutron density 10^{22} cm⁻³

nucleosynthesis of heavy nuclei

radioactive decay of heavy elements

Power short lived RED-IR signal (days)

Li & Paczynski 1998; Kulkarni 2005 Metzger et al. 2010; Tanaka et al. 2014; Barnes & Kasen 2013

Shock-heated ejecta, accretion disc wind outflow, secular ejecta

- \rightarrow Weak interactions: neutrino absorption, electron/positron capture
- → Higher electron fraction, no nucleosynthesis of heavier element
- \rightarrow Lower opacity

- Kasen et al. 2015, Perego et al. 2014, Wanajo et al. 2010
- → brief (~ 2 day) blue optical transient

Observables: expectations

Light curve shape (duration and peak luminosity) and spectarl shape are dramatically affected by lanthanides

UV/Optical/NIR Light Curves

Extremely well characterized photometry of a Kilonova: thermal emission by radiocative decay of heavy elements synthesized in multicomponent (2-3) ejecta!

EJECTED MASS ~ 0.03 – 0.05 M_{\odot} EXPANSION VELOCITY ~ 0.1 – 0.3 c

First spectral identification of the kilonova emission

- the data revealed signatures of the radioactive decay of r-process nucleosynthesis (Pian et al. 2017, Smartt et al. 2017)
- BNS merger site for heavy element production in the Universe!
 (Cote et al. 2018, Rosswog et al. 2017)

Credit: ESO/E. Pian et al./S. Smartt & ePESSTO/L. Calçada

Multi-messenger studies

GRB/GW FUNDAMENTAL PHYSICS/COSMOLOGY

GRB/GW delay

 $\Delta t = (1.74 \pm 0.05) \, s$

 → difference speed of gravity and speed of light between

$$-3\,\times\,10^{-15}\leqslant\frac{\Delta v}{v_{\rm EM}}\leqslant+7\,\times\,10^{-16}$$

GWs propagate at the speed of light to within 1:10¹⁵! LVC 2017, APJL, 848, L13

Consequences of multi-messenger detection of GW170817 for cosmology Constraint on the speed of GWs ruled out many classes of modified gravity models (quartic/quintic Galileons, TeVeS, MOND-like theories, see, e.g., Baker et al. '17, Creminelli & Vernizzi '17)

GRAVITATIONAL-WAVE COSMOLOGY

Recession velocity /redshift GW distance

 $v_H = H_0 d$ Combining the distance

measured from GWs $~d=43.8^{+2.9}_{-6.9}\,{
m Mpc}$

and NGC4993 recession velocity

$$\rightarrow H_0 = 70.0^{+12.0}_{-8.0} \,\mathrm{km \, s^{-1} \, Mpc^{-2}}$$

Abbott et al. 2017, Nature, 551, 85A

MULTIMESSENGER CONSTRAINTS ON NUCLEAR EOS

Simulations in NR

EM observations exclude very soft EOS!

EM observations \rightarrow Mej,tot > 0.05Mo suggests a lower limit Λ > 400

Radice, Perego, Zappa, Bernuzzi 2017

EM constraints on the TYPE OF REMNANT and multi-messenger constraints on RADII and maximum MASS of (TOV) NSs

EM constraints on the TYPE OF REMNANT and multi-messenger constraints on RADII and maximum MASS of (TOV) NSs

Radioactively powered transients

The future of GW and Multimessenger astronomy

ET: the European 3G GW observatory concept

Triangular shape Arms: 10 km Underground Cryogenic Increase laser power Xylophone

3G effort worldwide

NSF funded in 2018 the Conceptual Design Study of a 3G facility: Cosmic Explorer: 40km – L shaped detector

EXPECTED SENSITIVITY

- Factor 10 better (x1000 Volume) than 2G detectors
- Wide frequency, with special attention to low frequency (few Hz)

The ET sensitivity will make it possible:

• Large distances back to the EARLY UNIVERSE

Detection horizon for black-hole binaries

The ET sensitivity will make it possible:

• Large distances back to the EARLY UNIVERSE

POPULATION:
 increase number of detections

 10^5 BNS detections per year 10^5 BBH detections per year

The ET sensitivity will make it possible:

- EARLY UNIVERSE
- POPULATION

 PRECISE GW ASTRONOMY: exceptional parameter estimation accuracy for very high SNR events

Remote Universe

The ET wide frequency band will make it possible:

• Access UNEXPLORED MASS up to 10³ Mo

The ET wide frequency band will make it possible:

• Access UNEXPLORED MASS up to 10³ Mo

• ET sky-localization capabilities

BNS simulation

Networkskykycadia atianoracapaltietses

ATHENA

THE ASTROPHYSICS OF THE HOT AND ENERGETIC UNIVERSE

Europe's next generation X-RAY OBSERVATORY

HOW DOES ORDINARY MATTER ASSEMBLE INTO THE LARGE SCALE STRUCTURES THAT WE SEE TODAY?

HOW DO BLACK HOLES GROW AND SHAPE THE UNIVERSE?

HERMES

7252LIC

TRANSIENT HIGH ENERGY SKY AND EARLY UNIVERSE SURVEYOR

MC

