# LIGO-India: An introduction





## Somak Raychaudhury



Inter-University Centre for Astronomy & Astrophysics, Pune Online 31/05/2021



### General theory of relativity: What is gravity?





**Isaac Newton** described the properties of gravity:

- It acts between all objects that have mass
- Its strength depends on the amount of mass and the distance between the objects
- Gravity causes things to accelerate, so it must be a force

Albert Einstein realised that space and time must be fundamentally connected for the laws of physics to be self-consistent  $\Rightarrow$  *spacetime* 

His 1915 **general theory of relativity** says that gravity is really *curvature in the geometry of spacetime*, caused by the presence of mass

- Gravity is not a force!
- Things naturally move along "straight" paths in the curved spacetime

# Gravity: Curved Spacetime

5

Credit: LIGO/T. Pyle

# **Gravitational Waves**





Detection of Gravitational Waves received the top awards in science, marking a glorious beginning of Gravitational Wave Astronomy





LIGO-India is a great opportunity for science, human resource development and technology spin-offs.

### **Einstein's General Relativity changed our view of space and time**



Empty space and time have real physical properties. Space has shape, stiffness and a maximum speed for information transfer

### **Basic idea for gravitational wave detection**



Spatial asymmetry induces relative phase shifts on light in arms

# LIGO

#### (Laser Interferometer Gravitational-Wave Observatory



When a gravitational wave passes LIGO, the tunnels deform slightly and the distance travelled by each beam changes so that they no longer cancel out. This produces a measurable signal at the detector. Expected deformation=10<sup>-18</sup> m for 4 km arms.

## The two current LIGO Observatories



# LIGO Measures displacements of 10<sup>-18</sup> Metre: how small is it?



## Two black holes merge



Credit: Science Photo Library/Alamy

# The first detection: Sep 14, 2015





# LIGO How massive were these black holes?



Image: Anirban Ain

## Known Stellar-Mass Black Holes June 2016





### Noise Limits the Sensitivity of Interferometers

- Seismic noise & vibration limit at low frequencies
- Atomic vibrations (Thermal Noise) inside components limit at mid frequencies
- Quantum nature of light (Shot Noise) limits at high frequencies
- Myriad problems with the lasers, electronics



# NSF

# A+: a mid-scale upgrade to Advanced LIGO



- Improved optical losses
- Improved readout
- Frequency-Dependent
  Squeezing
- Reduced thermal noise
  - Improved mirror coatings
- Observing by mid-2024



# What else do we expect to learn from this new frontier?





Credit: AEI, CCT, LSU

LIGO



NASA/WMAP Science Team

<u>Coalescing</u> <u>Compact Binary</u> <u>Systems</u>: Neutron Star-NS, Black Hole-NS, BH-BH

- Strong emitters, well-modeled,
- (effectively) transient

Cosmic Gravitationalwave Background

- Residue of the Big Bang
- Long duration, stochastic background



Credit: Chandra X-ray Observatory



<u>Asymmetric Core</u> <u>Collapse</u> <u>Supernovae</u>

<u>-</u>Weak emitters, not well-modeled ('bursts'), transient

#### <u>Spinning neutron</u> <u>stars</u>

- (nearly) monotonic waveform

- Long duration

·LIGO-G1700002

## **LIGO-Virgo Black Hole Mergers**





Image credit: LIGO

# Global Network of GW Observatories 2026

Largest baseline ~ 12000 km provided by LIGO-India





Whitcomb LIGO-G1100991-v3

# Detector Networks

Baselines in light travel time (ms)



# **Detector Networks**

Whitcomb LIGO-G1100991-v3

- Assume LIGO-India is at
  Assume LIGO-India
  - (latitude, longitude) = (14.2333028N, 76.4333147E)
- Two networks consisting of four detectors
  HILV, HHLV
- Four networks consisting of three detectors
  HIL, HIV, HLV, ILV
- Baseline in light travel times (in ms)

|   | Н     | 1     | L     | V     |
|---|-------|-------|-------|-------|
| Н | -     | 36.50 | 10.04 | 27.33 |
| I | 36.50 | -     | 39.23 | 22.27 |
| L | 10.04 | 39.23 | -     | 26.51 |
| V | 27.33 | 22.27 | 26.51 |       |







Fairhurst 2011

LIGO+Virgo only

With LIGO-India



# **LiGO-India** Laser Interfermetric Gravitational-Wave Observatory in India







# LIGO-India: Institutions

#### Funding agencies:

NSF(USA), DAE(India) & DST(India)

Institutions: LIGO Lab., Caltech & MIT (USA)

- 1. Inter-University Centre for Astronomy & Astrophysics (IUCAA), Pune IUCAA is the key science stakeholder
- 2. Institute for Plasma Research (IPR), Gandhinagar
- 3. Raja Ramanna Centre for Advanced Technology (RRCAT), Indore
- 4. Directorate of Construction, Services and Estate Management (DCSEM), Mumbai

Last three affiliated to Dept of Atomic Energy

### LIGO INDIA Major Responsibilities Among the lead Institutes

- Site Acquisition, Site Development and Civil Infrastructure: DCSEM
- Site Identification, Site characterization: IUCAA
- GW science, Data Handling, Storage & Analysis: IUCAA
- Human Resource Development, Scientific collaboration, among the International and the Indian GW community: IUCAA
- Vacuum Facility Setup , Vacuum Controls and Monitoring : IPR
- Controls\* & Data Acquisition: IPR
- Interferometer Detector: RRCAT
- 3rd Generation & Upgrades Technology Development: RRCAT

\*RRCAT is responsible for interfacing the front end controls with the detector sub systems, while IPR is responsible for the Supervisor control



### Site characterisation & preparation



**RCC Works for construction Site office** 



Automatic Weather Station (Installation is over and station is in operation)



Fencing work at the acquired site



# Computational facility for LIGO At IUCAA

### • Sarathi cluster

- 249 nodes, 7896 CPU cores
  3840 Intel Xeon G6248 cores,
  RAM: 5-10GB/core, storage:
  250TB, 10G and 2x25G
  interconnect
- Scope for prototyping GPU based codes: 10 NVIDIA K40 cards
- Building can accommodate infrastructure needed for LIGO-India





### Vacuum chambers: construction now



BSC Lower Shell Metrology Check



**BSC Lower Shell Ready for assembly** 



**BSC Upper Shell** 

Basic Symmetric Chamber (lower shell) Prototype under construction



## **EPO Activities Near The Site**













## **Social Media**





**LIGO India** 

The LIGO-India project is a planned third-generation Gravitational Wave detector, forming a part of an international network of detectors. It is one of the upcoming Mega-Science projects in Astronomy and will help to develop

Anupreeta More Data Scientist